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ABSTRACT

.

Conventional canonical methods distinguish between the

two variable sets being analyzing, but the mdthods do not

attempt to optimize the variance from a given variable set

that will be contained in the final solution. In this respect

canonicak methods are said the be "symetric." The paper

proposes two non-symetric, canonical-like techniques that can

be employed when theoretical or ility considerations suggest

that one variable set (Usually the gOterion set) Should be

emphasized.over the other variable set. The criteria that the

two methods meet are discussed, as are various,software

considerations.
4
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Kerlinger_(1973, p. 652) has suggested that "it is not

easy- to find research studies that 'have used canonical

analysis. In earlier years, of course, the calculations

involved were prohibitive. Today, even with computer

facilities and programs available, the method is evidently not

well knoWn. This is regrettable, because some research'

problems almost demand 'canoni.cal analysis." More recently,

Thorndike (1977, p. 76) expressed similar sentiments: "Given

the substantial theoreticq, literature on canonical analysis,

it is surprising 'to f.i.nd that the technique has seen

relatively infrequent use by researchers studying substantive

problems. Instances where the metbOds of cangnical analysis.

'have been applied rather than.studied for their own sake are

relatively rare. (but on the increase)." Still more recently,

Kettenring (1982, p. 355)- noted that "since canonical analysis

4

is usually consideeed to be one of the 'major methods' of
4

multivariate analysis, it sis perhaps, surprising that this

technique does not in fact play a larger role in data

analysis."

Er. Several possible causes 'for a reticience to apply

canonical methods have been cited, including the complexity of

canonical mathematics (Thompson, 1982, p. 467) and

difficulties in interpreting canonical results (Thompson,

1980a, pp. 16-17)., However, Cronbach (1971, pp. 489-490) Ato.s

argued that "statistical devices such as canonical
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correlation, for handling handling seeral- predictors and

seveial criteria simuleaneously, are not appropriate for the,

decision-oriented study... Utility.depen.ds upon values, hot

upon the statistical connections of sCores." Kettenring (1982,

p. 365) made a similar point: "To achieve its potential,

.better methods are needed for selecting 'canonical variables'

which have practical as well as theoretical interest and for'

making statistical inferences about them." These views stand

somewhat in contrast with Levine's (1977, p. 8) position that

"especially witb respect to canoniCal correlation, there seem

to be relatively few remaining puzzlee to be solved."

4

The purpose of th.is papek is to present.an extension of

those canonical methods which have traditionally been

available to researchers. The extension wifl 'be discussed in

the context of a concrete heurtistic example. However, some

discussion.of more conventional canonical methods (Hotelling,

1935) iS Tequired tO form the framework for the presentation.

The Logic of Canonical Analysis

Canonical corrtlation analysis is employed to study

relationships between two variable sets when each variable set

consists of at least two variables. Thus, Table 1 presents

the data for what is the simplest canodical case, since only

two criterion varables, X and Y, and only 'twO prediCtor

variables, A and B, are involved. Of course, these data are
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presente0 only for the purposes of discudsion, since the

,

bypothetical sample size (p = 10), is absurdly small.

t .TNSERT TABLE 1 TABOUTHERE.
.

The ,first "step in 4 canonical correlation analysis

involves the calculation -of the intervariable correlation
"N.

matrix. A symetric matrix of reduced rank equal to the number
'

of variables in the smaller of the two variable sets is then-

derived from the intervariable correlation matrix (see Cdolty
.

& Lohnes, 1971, p..176 for detaild). This,matrix,iS presenied

in Table 2. The eigenvalues of the Table 2 .mateix (as- Some

readers', may wish to verify'-by subjeet.ing-lhe matrix tsb,.,a

princiPal components analysis) ieaCh represent a squar7d,,
I ,

canonical cgrrelation coefficient. Since '\the. number of-
,

eigenvalues'which can be calculated lor sucft a matr4 equals
-

the number of rows (or columns) in'the matrix, it ehould'be

clear that the
t

maximum number of canonical correlatron

,

coefficients' which can be deriyed for a.data set equald...the.
A

number of variables in the smaller of the.two_ variable.sets.

Because in thi case both. variable srots, consist of two

variables, only two canonical-correlation ,coeffiCients'can. be

calculated.

INSERT TABLE 2 ABOUT HERE.

.

A squared canonical correlation coefficient kridicates the '

"*E

proportion of variance which two composites derived Trom the

two variable,sets linearly ehare. The composites are derived
4

4

6
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. ,

by multiplYing the Z scores of each person on eadh variable by

the coreesponding canonical function coefficients. Thus;

canonical correlationcoefficient is simply the Pearson

product-:moment bivariate correlation between two 'linear

compoSites derived from the two variable sets.

Table-3 provides an illustration of these calculations.

The ,table only presents the coefficients for the first

.
canonical function, although it has already been noted that a

.second function could have been calculated. The,canonical

dorrelaion is the bivariate correlation'between the two table

columns - headed "Criterion Composite" and "Predictor,

Composite." These 10 pairs of-values are -plotted in the Figure

scattergram. The figure also presents the regresSion line

for 'the two sets of 10 composites. Since the composites are

themselves also lin Z score form, the regression line passes

.through *the mean f both composites, i.e., the X-Y intercept,

;

ancU the .line's slope (.305) equals the bivariate 5orreiation

between the two omposites and also the canonical correlation

between the two Variable sets.

INSERT TABLE 3 AND FIGURE 1 ABOUT HiRE.

Some. Non-symetric Canonical-like Methods

. As the previous discussion suggests, conventional

canonical methods derive equation weights which optimize the

icorrelations between the canonical composites. Conventional

k

(
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methods Urns give similar consideration to'.both variable sets

when deriving function' coeffid'ients, i.e., the methods

distinguish betwee4 the predictor and the.criterion variable-

sets but do not emphasize one variable set over the other. In

this respect conventional canonical metlhods may be said to be,

"symetric." These features of conventional canonical analysis

are disturbing in research situations where the researcher may

wish to emphasize one Variable set over the other. Two

"non-symetric" methods of attending to variable set,

distinctions will be' presented here in the context of a

concrete heuristic example.

The correlation matrix presented in the bottom triangle

of the Table 4 matrix prOvides the heuristic. 'The data

(n = 235) were reported by Thompson (1980b) and involved two

Lssets of variables respectively-of size four.and 10. Table 5

pxesents tlie results obtained by analyzing the data with

conventional, symetric canonical methods. The sum pf the four

squared canonical correlation coefficients for the able 5

results was Since conventional funcions are

uncorrelated., the 'squared correlations can be added to

determine the cumulative propor.tion of informa'tion shared by

allthe possible canonical domposites that could be derived

from a data set in which the smallest variable set contained

four variables.

INSERt'TABLES 4 AND 5 ABOUT HERE.
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Suppose, howevet, that,the researcher wishes to derive

function weights for the 10 criterion vAiables subject to the

restriction that all of the variance in the criterion

variables must be represented' 'in the final cplution. One

possible way to do this' is to employ 'criterion variable

weights such as those presented in Table 6. These weights

imply that multiple regression analyses were -conducted

separately for'each of.the y criterion variailles.-4

INSERT TABLE 6 ABOVT'HERE.

The squared multiple correlationi from Table 6 sum to

.660. However, this regult overestimates the cumulative

portion of information shared by the score composites, because
1

the Table 6 functions are,not uncorrelatNed. The'argument that

these,functions are correlated Should seem reasonable since

the criterion variable weights were designated without

'considering the correlations among the variables.

However, ft is possible to provide a nonl-symetric method

which (al employs all the variance in the criterion yariables

(presuming, as will usually be the caSe, that ehis is the

variable set of the most interest to the rese.ircher), (b)

sheds light on the strvcture underlying the correlations among

the criterion variables, and which (c) allows uncorrelated

functions to be defined, at least When the predictor variables

are uncorrelated. The' method requires three steps. First,
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the intradoMain criterion correlations are subjected to a

,full-rank, ,principal _components analysis, using a readily

available routine/ frot a cOlnputer package such as SPSS

(TYPE=PA1). By definition, a full-rank, principal components

solution contains all of the variance prfd,sent in the 'y

criterion variables. Second, the orthogonal compdnents are

rotated to some orthogonal criterion (in thts case Varimax),

and factor scores are calculated (scores are requested in SPSS

with 'the inclusion of "FACSCORE" on the procedure card).

Finally, correla'tion coefficients among these factor scores

and.tEe predictor variables are computed (see upper triangle

of the Table 4 matrix) and all possible y multiple regressiTi

equations are calculated. Again, routiries for performing this

step of the analysis are readily _available. The results

produced in this manner'for the heuristic data are presented

in' Table 7. The function weights for the criterion varlables

are t:he "factor score coefficients" (obtained from SPSS during

'the principal components step .of the analysis merely by

requesting STATISTIC 7) derived by postmultiplying the

inverted intradomain criterion variable correlation

coef cients by the rotated principal components matrix ;. the

function coefficients for the predictor.variables 'are the beta

weights derived from the regression analysis.

INSERT TABLE 7 ABOUT HERE.

4

4) A
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Since in this case the four predictor variables happened

to be uncorrelated, and since this non-symetric procedure

always produces uncorrelated criterion composites, the

functions .themselves are uncorrelated. Thus, the sum of the

squa ed multiple correlations whs .593, just as the sum of the

-squajred canonical *correlation coefficients was also .593 when

coniipntional canonical functions were computed.

1 /
A second a'nd even mdre'elegant non-symetric method can be

proposed. This method (a) employs all the VarianCe in the

criterion variables, (b) sheds light oR the structure

underlying the correlations among the criterion variables, (c)

llows orthogonal functions to be, defined, and (d) is

"confirmatory" in that a priori expectations regarding the
. -

criterion variabdes are considered. This last element is

responsive to Cronbach's (1971) previously mentioned utility
- .4.

concerns and can minimize the extent to Which the solution'

capitalizes on,sampling error. However, unlike the previously

'discussed procedures, this\ second method can ,not be

implemented solely with the use of widely available

statistical packageb sucla as SPSS.

The procedure requires four steps. First, the

correlations are subjected to aintradomain critenion

full-rank principal components analysis. Second, the

components are rotated to a position of "best fit" with,an a
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priori defined "tarht" matrix (for an' example. see Thompson &

Pitts, 1981/82), typically consisting of ones', zeroes, ,and

negative ones. This rotation can be performed using the

computer program provided by Ve1d4n (1967). Third, factor

scores are computed using the least squares algorhythm-:

-1
Z R C = F
NxV VxV VxF NxF

where Z refers to thp V scores of the N peoPle in the scores'

/ standardized form, R ia the intervariable correlation,matrix,

and C is the principal components matrix derived in the

previous step. .The calculation of these factor scores can be

facilitatdd at most computing facilities by t1;ie use fairly

"user friendly" utility packages such as IMSL. Finally, the

correlation coefficients among the y factor scores and the

predictor -variables are computed and all possible / multiple

regression equations are computed.

"N0.40 Discussion

The non-symetric methods suggested here can provide; at ''

least in some instandes, both substantive and--hbristic

benefits When compared with conventional canonical methoqs.."

The non-symetric methods augMent several very ...helpful

extensions of conventional canonical methodology, including

most notably Stepwise techniques (Rim, 1972; Tliompson, 1982),

part and partial canonical methods (Lee, 1978), and redundancy

.1 2
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analysis '(van den Wollenberg, 1977). Of course, when the t

pon-symetric methods are applied for the purposes'.of actual

1.1bstantivd inquiry, it- becomes important to supplement the
-

analysis by the computatidn of tlie variab1es'4'structure,

coefficients (see Levine, 1977, p.,20). The reader is also.

cautioned that experimentwise Type I error rates are inflated

by the use of traditional regression test statistics with the'

non-symetric methods. However, when,,the functions are

uncorrelated, as they were ,here, the exact experimentwise

error rate would be: alpha* = 1 lc, where k equals
. . 7-

... ..

..

((1 alpha) ,raised.to-they power), where y is the number of ,

criterion variables. A reasonable approach in such a case

might be tot test each function at the alpha/y level of

1

statistical-significance.

The non-symetric methods presented here will be most

helpful when there are clear theoretical distinctions between

the predictor and the criterion variable sets, and when the

research situation fmplies tha optimizing the-variance of the
.t

criterion variables is at least as important as optimizing the

correlation between the variable sets' composites. The

non-symetric methods will also be most appropriate when there

is a definite interest in exploratory (the Narimax rotated

solution) or "confirmatory" (the "best fit" solution)

investigation of the structure underlyiriTthe.the criterion

variables. Thue, hie techniques will be partiCUlarly potent

1 3
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when the criterion variables are themselves correlated (as'

they tended not-to be in the heuristic example presented

here), because Chen a few composites can contain the

preponderance of Che criterion variables' variance, and a more

'parsimonious 'solution will result.

But the non-symetric methods are'also valuable to Che

extent that they may help to-demystify conventional canonical

Methods. It has been noted Chat canonical analysis is

essentially a principal components analysis of a particular

matrix derived from the intervariable correlation matrix

(e.g., Table 2). Similarly, the non-symetric methods relied

-4

heavily upon the use of principal comporcnts analyses. Thus
.%

it can be suggested that Che symetric and the non-symetric

methods are somewhat analogous. These conceptual linkages

among Che techniques merely suggest, as Knapp (1978) has

shown, that canonical methods represent a most-general

data-analytic system, and that canonical methods subsume all

parametric statistical techniques.

\-

st
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Table 1

Hypothetical Data Set.

X Y A

1(-0.72) 9(+1.30- 4(+0.08) 6(+0.33)

5(+1.90) 4(-0.15) 0(-1.02) 8(+0.88)

3(+0.,59) 9(+1.36) 6(+0.64) 0(-1.33)

3(+0.59) 4(-0.15) 6(+0.64) ,9(+1.16)

3(+0.59) 3(-0.45) 9(+1.46) 0(=1.33)

2(-0.07) 2(-0.76) 9(+1.46) 0(-1.33)

2(-0.07) 0(-1.36) 2(-0.47) 9(+1.16)

0(-1.38) 2(-0.76) 0(-1.02) 5(+0.06)

0(-1.38) 9(41.* 1(-0.74): 6(+0.33)

2(-0.07) 3(-0.45) 0(-1.02) 5(+0.06)

Note: Z score equivalents of the unstandardized data are

presented.in parentheses.

Table 2

Analyzed Matrix

.086 .011

.048. .027

z
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:liable 3

t Calculation of Cbmposites

Criterion Predictor

Case OCK Fl ZY F2 Cbmposite Cbmpcsite ZA F3- ZB F4

1 (-0.72)(F1)+(+1.36)(F2) = -0.97 +0.42 = (+0.08)(F3)+(+0.33)(F4)
t,

2 (+1.90)(F1)+(-0.15)(F2) = +1.82\ -0.49 = (-1.02)(F3)+(+0.88)(F4)
V

3 .(+0.59)(F1)+(+1.36)(F2) = +0.26 1 -0.43= (+0.64) (F3)+(-1.33)(F4)

4 (+0.59)(F1)+(-0.15)(F2) = +0.59

0
5 (+0.59)(F1)+(-0.45)(F2) = +0.65

6 (-0.07)01)+(-0.76)(F2) = +0.10

7 ( -0.07)(F1)+( -1.36)(F2) =

8 ( -1.38)(Fl)+( -0.76)(F2) = -1.14

9 (-1.38)(Fl)+(+1.36)(F2) = -1.59

10 (-0.07)(Fl)+(-0.45)(F2) = +0.04

1+1,927)-0

+0.6-417:1(+1

+0.64 = (+1

.49 = (-0

1.27 =1-1

-0.65 =

-1.27 =

.64) (F3)+(+1

.46) (F3)+(-1

.46)(F3)+(-1

.47) (F3)+(+1

.02) (F3)+(+0

.16)(F4)

.33) (F4)

.33) (F4)

.16)(F4)

.06)(F4)

(-0 .74)(F3)+(+0 .33) (F4)

(-1 .02)(V3)+(+0 .06) (F4)

Note: The canonical function coefficients are respectively: "Fi" =

+0.94; "F2" = -0.22; "F3" = +1.30; "F4" = +0.94.

,r;
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Table 4

Correlation Matrix

Variable ABCDQRSTUVWXYZ
INQSYRNT (A) -- 00 00 00 15 10 -16 15 06 22 04 02 03 -12

INCISIVE (B) 00 00 00 -24 24 05 07 13 06 17 04 06 -09

AFFECTIV (C) 00 00 00 16 14 -10 07 -06 -07 02 19 -11 16

STRUCTUR (D) 00 00 00 14 -05 17 -04 04 08 10 14 10 12

IESSENTIA (0) -15 05 -10 17 -- 00 00 .00 00 00 00 00 do" 00

HUMANISM (R) 16 08 08 -02 00 -- 00 00 00 00 00 00 00 00

liERENIAL (S) 05 08 -13 10 00 00 -- 00 00 op oo oo oo 00

PROGRESS (T) 09 26 15 -04 00 00 00 00 00 00 00 00 00

RATIONAL (U) 07 15 -07 04 00 00 00 00 00 00 00 00 00

EXISTINL (V) -10 213 16 12 00. 00, 00 .00 00 00 00 ob 00

WARM (W) 03 05 20 12 -01 05L14 13 -04 '-14 -- 00 00 00

SCHOLARL (X) 06 20 01 09 02 10 14 12 07 -14 00 -- 00 00

RIGOROUS (Y) 22 06 -09, 10 08 05 15 -06 07 -01 00 00 -- 00

IMPOTENT (Z) 13 -26 18 15 01 04 -08 -07 -016,25 00. pe oo



Table 5

Canonical Results

Variable .1 II III IV

INQSTRAT -.38 -.66 .49 .43

INCISIVE -.87 .03 -.42 -.25

AFFECTIV. .25 -.70 -.17 -.65

STRUCTUR .18 -.28 -.75 .57

ESSENTIA .07 .32 -.62 .24

HUMANISM -.23 -.29 .20 -.10

ERENIAL -.09 .03 -.2f .40

ROGRESS -.48 ,%-.32,.-1.05 -.41

RATIONAL -.29 -.03 -.13 .19

EXISTENL .35 -.13 -.50 -.25

. 4

WA11 .12 -.41 -.49 -.11

SdHOLARL -.23- -.13 -.40 .02

RIGOROUS -.30 ,-.29 .14 .52

IMPOTENT .40 -.60 .17 .38

2

Ro .210 .176 .113 .094

Page 17
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Variable I II

1

Table 6

Regression Solutions
01. 1

,
III IV V ,VI VII

INQSTRAT -.15 .16 .05 .09 .07 -.10 .03

INCISIVE .05 .08 .08 .26 .15 -.13 .05

AFFECTIV -.16 .08 -.13 ..15,-.07 .16 .20

SRUCTUR .17 -.02 .10 -.04 .04 4p2 .12

ESSENTIA 1.00 .06 .00 .00 ..00 ,00 .00
4.,

HUMANISM .00 1.00 .00 .00 .00 .00 .00
, e

PERENIAL .00 .00 1.00 .00 .00 .00 .00

.a.

PROGRESS .00
4
.00 .00 1.00 .00 .00 .00

RATIONAL .00 .00 .00 .00 1.00 .00 .00

EXVSTENL .700 .00 .00 .00 .001. .00 .06

WARN .00 .00 .00 .00 .00 .00 1,00
4,

SCHOLARL .00 .00 .00 %00 .09 .00 '.00

RIGOROUS ,00 .0() .00 .00 .00 .00 .00

IMPOTENT .00 .00 .00 .00 .00-.00 .00
It

2
.

R .)46 .039 .035 .098 .034 .069 ..057

-)

,

,

21
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VIII IX X

.06 .22 .13

.20 .06 -.26

,.01 -..09 .18

,09 .10 .15

7oo .00-.00

.00 .00

.00 .00

.00 .00

.00 .00

.60 .00

.ob .00

1.00 .00

.00 1.00

.00 .06

.00

.00

.00

.054 .671 .138

,

io

'V
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Table 7

Non-symetric Technique Results

yariable I II III IV

i'NQSTRAT .15 .10 -.16: '.1'5*-

INdISIVE L.24 .24 :05 .07

AFFECT1V .16,. .14 -.10 .07

STRUCTUFt\ .14 -.05 .17 -.04

ESSENTIA .Op .00 ]oo .00

HUMANISM -.02' .01 .00 1.01

PERENIAL .04 .90 .00 ,.op

PROGRESS .041.02 .00 .00

RATIONAL .03 .00 00 .00

EXISTENL -.14 -.02 .00 .00

WARM -.01 -.07 '..00-.03

SCHOLARL -.02 -.06 -.01 -."05

RIGOROUS .do .03 -.04 -.03

1MPOTENT 1.03 ,04 .00 -.02

2

1.123 .089 .066 .035

.\,Page 19

V VI

.06 .22

13 .06

-.061-.07

VII

.04

:17

.02

VIII

.02,

.04

.19

IX X

.03 -.12

.06 2.09

-.11 .16

.04. .08 .10 .14 .10 .12

.00 -.04 -.01 .01 .01 .00

.00 -.03 -.05 -.03 .00 .00

.01 -.08 ..07 1.03 -.01

.00 .03 -.06 -.07 .00 -.02

1.01 2.04 -.04 .02 .01 -.01

-.01 .00 .08 .07 -.01 1.04

.02 -.01 .01 1.02 .07\\.08

-.04 .01 1.03 .01 -.07 .08

-.04 1.02 .01 -.01 -.08 .01

.03 .00 -.02 -.01 .04 -.14

.028 .065 ,040 2057 .027 .062
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- Figure 1 .

Scattergram of Canonical Composites
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